96 research outputs found

    Enabling Communication Technologies for Automated Unmanned Vehicles in Industry 4.0

    Full text link
    Within the context of Industry 4.0, mobile robot systems such as automated guided vehicles (AGVs) and unmanned aerial vehicles (UAVs) are one of the major areas challenging current communication and localization technologies. Due to stringent requirements on latency and reliability, several of the existing solutions are not capable of meeting the performance required by industrial automation applications. Additionally, the disparity in types and applications of unmanned vehicle (UV) calls for more flexible communication technologies in order to address their specific requirements. In this paper, we propose several use cases for UVs within the context of Industry 4.0 and consider their respective requirements. We also identify wireless technologies that support the deployment of UVs as envisioned in Industry 4.0 scenarios.Comment: 7 pages, 1 figure, 1 tabl

    6G Underlayer Network Concepts for Ultra Reliable and Low Latency Communication in Manufacturing

    Full text link
    Underlayer networks in the context of 6G for manufacturing are crucial. They address the evolving needs of highly interconnected and autonomous systems in industry. The digitalization of manufacturing processes, driven by the Internet of Things and increased data availability, enables more efficient and demand-driven production. However, wireless connectivity, which offers flexibility and easy integration of components, comes with challenges such as signal interference or high latency. A new management system is needed to coordinate and route traffic of multiple networks in a specific coverage area. This paper proposes underlayer networks designed for manufacturing, providing low latency, reliability, and security. These networks enable wireless connectivity and integration of wireless technologies into the manufacturing environment, enhancing flexibility and efficiency. The paper also discusses network slicing, spectrum sharing, and the limitations of current wireless networks in manufacturing. It introduces a network concept for underlayer networks and evaluates its application in closed-loop communication for machine tools. The study concludes with future research prospects in this area

    Iron(III)‐tCDTA derivatives as MRI contrast agents: Increased T 1 relaxivities at higher magnetic field strength and pH sensing

    Get PDF
    Purpose: Low molecular weight iron(III) complex-based contrast agents (IBCA) including iron(III) trans-cyclohexane diamine tetraacetic acid [Fe(tCDTA)](-) could serve as alternatives to gadolinium-based contrast agents in MRI. In search for IBCA with enhanced properties, we synthesized derivatives of [Fe(tCDTA)](-) and compared their contrast effects. Methods: Trans-cyclohexane diamine tetraacetic acid (tCDTA) was chemically modified in 2 steps: first the monoanhydride of Trans-cyclohexane diamine tetraacetic acid was generated, and then it was coupled to amines in the second step. After purification, the chelators were analyzed by high-performance liquid chromatography, mass spectrometry, and NMR spectrometry. The chelators were complexed with iron(III), and the relaxivities of the complexes were measured at 0.94, 1.5, 3, and 7 Tesla. Kinetic stabilities of the complexes were analyzed spectrophotometrically and the redox properties by cyclic voltammetry. Results: Using ethylenediamine (en) and trans-1,4-diaminocyclohexane, we generated monomers and dimers of tCDTA: en-tCDTA, en-tCDTA-dimer, trans-1,4-diaminocyclohexane-tCDTA, and trans-1,4-diaminocyclohexane-tCDTA-dimer. The iron(III) complexes of these derivatives had similarly high stabilities as [Fe(tCDTA)](-). The iron(III) complexes of the trans-1,4-diaminocyclohexane derivatives had higher T-1 relaxivities than [Fe(tCDTA)](-) that increased with increasing magnetic field strengths and were highest at 6.8 L.mmol(-1).s(-1) per molecule for the dimer. Remarkably, the relaxivity of [Fe(en-tCDTA)](+) had a threefold increase from neutral pH toward pH6. Conclusion: Four iron(III) complexes with similar stability in comparison to [Fe(tCDTA)](-) were synthesized. The relaxivities of trans-1,4-diaminocyclohexane-tCDTA and trans-1,4-diaminocyclohexane-tCDTA-dimer complexes were in the same range as gadolinium-based contrast agents at 3 Tesla. The [Fe(en-tCDTA)](+) complex is a pH sensor at weakly acidic pH levels, which are typical for various cancer types

    AUREOCHROME1a-mediated induction of the diatom-specific cyclin dsCYC2 controls the onset of cell division in diatoms (Phaeodactylum tricornutum)

    Get PDF
    Cell division in photosynthetic organisms is tightly regulated by light. Although the light dependency of the onset of the cell cycle has been well characterized in various phototrophs, little is known about the cellular signaling cascades connecting light perception to cell cycle activation and progression. Here, we demonstrate that diatom-specific cyclin 2 (dsCYC2) in Phaeodactylum tricornutum displays a transcriptional peak within 15 min after light exposure, long before the onset of cell division. The product of dsCYC2 binds to the cyclin-dependent kinase CDKA1 and can complement G1 cyclin-deficient yeast. Consistent with the role of dsCYC2 in controlling a G1-to-S light-dependent cell cycle checkpoint, dsCYC2 silencing decreases the rate of cell division in diatoms exposed to light-dark cycles but not to constant light. Transcriptional induction of dsCYC2 is triggered by blue light in a fluence rate-dependent manner. Consistent with this, dsCYC2 is a transcriptional target of the blue light sensor AUREOCHROME1a, which functions synergistically with the basic leucine zipper (bZIP) transcription factor bZIP10 to induce dsCYC2 transcription. The functional characterization of a cyclin whose transcription is controlled by light and whose activity connects light signaling to cell cycle progression contributes significantly to our understanding of the molecular mechanisms underlying light-dependent cell cycle onset in diatoms

    Dynamic vulnerability revealed in the collapse of an Arctic tidewater glacier

    Get PDF
    Abstract Glacier flow instabilities can rapidly increase sea level through enhanced ice discharge. Surge-type glacier accelerations often occur with a decadal to centennial cyclicity suggesting internal mechanisms responsible. Recently, many surging tidewater glaciers around the Arctic Barents Sea region question whether external forces such as climate can trigger dynamic instabilities. Here, we identify a mechanism in which climate change can instigate surges of Arctic tidewater glaciers. Using satellite and seismic remote sensing observations combined with three-dimensional thermo-mechanical modeling of the January 2009 collapse of the Nathorst Glacier System (NGS) in Svalbard, we show that an underlying condition for instability was basal freezing and associated friction increase under the glacier tongue. In contrast, continued basal sliding further upstream increased driving stresses until eventual and sudden till failure under the tongue. The instability propagated rapidly up-glacier, mobilizing the entire 450 km2 glacier basin over a few days as the till entered an unstable friction regime. Enhanced mass loss during and after the collapse (5–7 fold compared to pre-collapse mass losses) combined with regionally rising equilibrium line altitudes strongly limit mass replenishment of the glacier, suggesting irreversible consequences. Climate plays a paradoxical role as cold glacier thinning and retreat promote basal freezing which increases friction at the tongue by stabilizing an efficient basal drainage system. However, with some of the most intense atmospheric warming on Earth occurring in the Arctic, increased melt water can reduce till strength under tidewater glacier tongues to orchestrate a temporal clustering of surges at decadal timescales, such as those observed in Svalbard at the end of the Little Ice Age. Consequently, basal terminus freezing promotes a dynamic vulnerability to climate change that may be present in many Arctic tidewater glaciers

    第848回 千葉医学会例会・第7回 磯野外科例会 60.

    Get PDF
    <p>Shown are membrane voltages of the cortical pyramidal (top) and the thalamic relay population (bottom). During N3 the model shows ongoing slow oscillatory activity. In contrast to sleep stage N2, SOs cannot be identified as isolated events. Furthermore, there are no isolated spindle oscillations and spindle activity is time-locked to SOs. Parameters are given in <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1005022#pcbi.1005022.t002" target="_blank">Table 2</a>.</p

    Adhiron: a stable and versatile peptide display scaffold for molecular recognition applications

    Get PDF
    We have designed a novel non-antibody scaffold protein, termed Adhiron, based on a phytocystatin consensus sequence. The Adhiron scaffold shows high thermal stability (Tm ca. 101°C), and is expressed well in Escherichia coli. We have determined the X-ray crystal structure of the Adhiron scaffold to 1.75 Å resolution revealing a compact cystatin-like fold. We have constructed a phage-display library in this scaffold by insertion of two variable peptide regions. The library is of high quality and complexity comprising 1.3 × 10(10) clones. To demonstrate library efficacy, we screened against the yeast Small Ubiquitin-like Modifier (SUMO). In selected clones, variable region 1 often contained sequences homologous to the known SUMO interactive motif (V/I-X-V/I-V/I). Four Adhirons were further characterised and displayed low nanomolar affinities and high specificity for yeast SUMO with essentially no cross-reactivity to human SUMO protein isoforms. We have identified binders against >100 target molecules to date including as examples, a fibroblast growth factor (FGF1), platelet endothelial cell adhesion molecule (PECAM-1; CD31), the SH2 domain Grb2 and a 12-aa peptide. Adhirons are highly stable and well expressed allowing highly specific binding reagents to be selected for use in molecular recognition applications

    Identifying Neighborhoods of Coordinated Gene Expression and Metabolite Profiles

    Get PDF
    In this paper we investigate how metabolic network structure affects any coordination between transcript and metabolite profiles. To achieve this goal we conduct two complementary analyses focused on the metabolic response to stress. First, we investigate the general size of any relationship between metabolic network gene expression and metabolite profiles. We find that strongly correlated transcript-metabolite profiles are sustained over surprisingly long network distances away from any target metabolite. Secondly, we employ a novel pathway mining method to investigate the structure of this transcript-metabolite relationship. The objective of this method is to identify a minimum set of metabolites which are the target of significantly correlated gene expression pathways. The results reveal that in general, a global regulation signature targeting a small number of metabolites is responsible for a large scale metabolic response. However, our method also reveals pathway specific effects that can degrade this global regulation signature and complicates the observed coordination between transcript-metabolite profiles
    corecore